box-o-sand/leetcode/stuff.py
2023-11-01 00:12:36 -04:00

628 lines
15 KiB
Python

import collections.abc
import copy
import random
import typing
import stdlib
def yep(s: str) -> bool:
return s.strip().lower().startswith("y")
def guess_bisect_repl(lower: int, upper: int) -> int:
mid = lower + ((upper - lower) // 2)
if yep(input(f"is it {mid}? ")):
return mid
if yep(input(f"higher than {mid}? ")):
return guess_bisect_repl(mid, upper)
return guess_bisect_repl(lower, mid)
def find_sqrt_ish(n: int) -> int:
return int(find_bisect(0, n, gen_sqrt_check(n)))
def gen_sqrt_check(n: int) -> typing.Callable[[float], int]:
def check(mid: float) -> int:
mid_sq: float = mid * mid
if mid_sq == n:
return 0
if mid_sq < n:
return 1
return -1
return check
def find_bisect(
lower: float, upper: float, check: typing.Callable[[float], int]
) -> float:
mid: float = lower + ((upper - lower) / 2)
print(f"lower={lower} mid={mid} upper={upper}")
if mid == lower or mid == upper or check(mid) == 0:
return mid
if check(mid) == 1:
return find_bisect(mid, upper, check)
return find_bisect(lower, mid, check)
def cartesian_path(p0: tuple[int, int], p1: tuple[int, int]) -> list[tuple[int, int]]:
path: list[tuple[int, int]] = []
if p0 < p1:
for i in range(p0[1], p1[1]):
path.append((i, p0[0]))
for i in range(p0[0], p1[0]):
path.append((p1[1], i))
else:
for i in range(p0[1], p1[1] - 1, -1):
path.append((i, p0[0]))
for i in range(p0[0] - 1, p1[0], -1):
path.append((p1[1], i))
return path
def gen_matrix(width: int, height: int) -> list[list[int]]:
return [list(range(width)) for _ in range(height)]
class MinStack:
def __init__(self):
self._v: list[int] = []
self._min: list[int] = []
def push(self, val: int) -> None:
self._v.append(val)
self._min.append(min(val, self._min[-1] if self._min else val))
def pop(self) -> None:
self._v.pop(-1)
self._min.pop(-1)
def top(self) -> int:
return self._v[-1]
def getMin(self) -> int: # no qa
return self._min[-1]
def linked_list_to_list(head: stdlib.LinkedListNode | None) -> list[int]:
seen: set[int] = set()
ret: list[int] = []
while head is not None:
if hash(head) in seen:
return ret
seen.add(hash(head))
ret.append(head.val)
head = head.next
return ret
def sort_linked_list(head: stdlib.LinkedListNode | None) -> stdlib.LinkedListNode | None:
by_val: list[tuple[int, stdlib.LinkedListNode]] = []
ret: stdlib.LinkedListNode | None = None
while head is not None:
by_val.append((head.val, head))
head = head.next
cur = ret
for _, node in sorted(by_val, key=lambda v: v[0]):
if cur is None:
cur = ret = node
continue
cur.next = node
cur = cur.next
if cur is not None:
cur.next = None
return ret
def connect_binary_tree_right(
root: stdlib.ConnectableBinaryTreeNode | None,
) -> tuple[stdlib.ConnectableBinaryTreeNode | None, list[int | None]]:
if root is None:
return None, []
by_level = binary_tree_by_level(copy.deepcopy(root))
by_level = typing.cast(dict[int, list[stdlib.ConnectableBinaryTreeNode]], by_level)
serialized: list[int | None] = []
print("")
if 0 not in by_level or len(by_level[0]) == 0:
return None, []
connected_root = by_level[0][0]
for level, nodes in sorted(by_level.items(), key=lambda p: p[0]):
for i in range(len(nodes)):
serialized.append(nodes[i].val)
if len(nodes) > i + 1:
print(f"{'-' * level}> connecting {nodes[i].val} -> {nodes[i + 1].val}")
nodes[i].next = nodes[i + 1]
serialized.append(None)
return connected_root, serialized
def binary_tree_by_level(
root: stdlib.BinaryTreeNode,
) -> dict[int, list[stdlib.BinaryTreeNode]]:
combined: dict[int, list[stdlib.BinaryTreeNode]] = {}
for path in collect_binary_tree_levels(0, root):
level, node = path
combined.setdefault(level, [])
combined[level].insert(0, node)
return combined
def collect_binary_tree_levels(
level: int, node: stdlib.BinaryTreeNode | None
) -> typing.Iterator[tuple[int, stdlib.BinaryTreeNode]]:
if node is None:
return
yield (level, node)
yield from collect_binary_tree_levels(level + 1, node.right)
yield from collect_binary_tree_levels(level + 1, node.left)
def sum_binary_tree_path_ints(root: stdlib.BinaryTreeNode | None) -> int:
path_ints: list[int] = []
for path in collect_binary_tree_paths(root):
path_ints.append(int("".join([str(node.val) for node in path])))
return sum(path_ints)
def binary_tree_paths_as_lists(
paths: list[list[stdlib.BinaryTreeNode]],
) -> list[list[int]]:
paths_vals: list[list[int]] = []
for path in paths:
paths_vals.append([node.val for node in path])
return paths_vals
def collect_binary_tree_paths(
node: stdlib.BinaryTreeNode | None,
) -> typing.Iterator[list[stdlib.BinaryTreeNode]]:
if node is None:
return
if node.right is None and node.left is None:
yield [node]
return
if node.right is not None:
for path in collect_binary_tree_paths(node.right):
yield [node] + path
if node.left is not None:
for path in collect_binary_tree_paths(node.left):
yield [node] + path
def binary_tree_from_list(inlist: list[int | None]) -> stdlib.BinaryTreeNode | None:
if len(inlist) == 0:
return None
nodes: list[stdlib.BinaryTreeNode | None] = [
typing.cast(stdlib.BinaryTreeNode | None, stdlib.TreeNode.from_int(i))
for i in inlist
]
nodes_copy = nodes[::-1]
root = nodes_copy.pop()
for node in nodes:
if node is None:
continue
if len(nodes_copy) == 0:
break
node.left = nodes_copy.pop()
if len(nodes_copy) > 0:
node.right = nodes_copy.pop()
return root
def binary_tree_from_preorder_inorder(
preorder: list[int], inorder: list[int]
) -> stdlib.BinaryTreeNode | None:
preorder_reversed = preorder[::-1]
def subtree(left: list[int], right: list[int]) -> stdlib.BinaryTreeNode:
root: stdlib.BinaryTreeNode = typing.cast(
stdlib.BinaryTreeNode, stdlib.TreeNode(preorder_reversed.pop())
)
if len(left) > 1:
split_pos = left.index(preorder_reversed[-1])
root.left = subtree(left[:split_pos], left[split_pos + 1 :])
elif len(left) == 1:
preorder_reversed.remove(left[0])
root.left = typing.cast(stdlib.BinaryTreeNode, stdlib.TreeNode(left[0]))
if len(right) > 1:
split_pos = right.index(preorder_reversed[-1])
root.right = subtree(right[:split_pos], right[split_pos + 1 :])
elif len(right) == 1:
preorder_reversed.remove(right[0])
root.right = typing.cast(stdlib.BinaryTreeNode, stdlib.TreeNode(right[0]))
return root
split_pos = inorder.index(preorder[0])
return subtree(inorder[:split_pos], inorder[split_pos + 1 :])
class JumpSpace(typing.NamedTuple):
pos: int
val: int
moves: list["JumpSpace"]
@classmethod
def from_board(
cls, pos: int = 0, board: typing.Iterable[int] = ()
) -> typing.Optional["JumpSpace"]:
board = list(board)
if len(board) == 0:
return None
space = cls(pos, board[pos], [])
space.collect(board)
return space
def collect(self, board: list[int]) -> None:
del self.moves[:]
if self.pos > len(board) or len(board) == 0:
return
for n in range(self.pos + 1, self.pos + self.val + 1):
if n >= len(board):
break
self.moves.append(typing.cast(JumpSpace, JumpSpace.from_board(n, board)))
def jump_paths(self) -> list[list[int]]:
ret: list[list[int]] = [[self.pos]]
for next_space in self.moves:
for path in next_space.jump_paths():
ret.append([self.pos] + path)
return ret
def collect_complete_jump_paths_from_board(board: list[int]) -> list[list[int]]:
return [
p
for p in collect_jump_paths_from_board(board)
if len(p) > 0 and p[-1] >= len(board) - 1
]
def collect_jump_paths_from_board(board: list[int]) -> list[list[int]]:
space = JumpSpace.from_board(0, board)
if space is None:
return []
return space.jump_paths()
# NOTE: the expensive way goes like this
# complete_paths = collect_complete_jump_paths_from_board(board)
# if len(complete_paths) == 0:
# return -1
# return min([len(p) - 1 for p in complete_paths])
def count_min_jumps_from_board(board: list[int]) -> int:
return len(collect_min_jumps_from_board(board))
def collect_min_jumps_from_board(board: list[int]) -> list[int]:
if len(board) < 3:
return list(range(1, len(board)))
jumps: list[int] = []
range_begin: int = 0
val = board[range_begin]
range_end: int = range_begin + val + 1
while range_end < len(board):
potential_jumps = board[range_begin:range_end]
scored_jumps = [
(val + range_begin + i, val, range_begin + i)
for i, val in enumerate(potential_jumps)
]
_, val, space = max(scored_jumps)
jumps.append(space)
range_begin = space
range_end = range_begin + val + 1
return jumps + [len(board) - 1]
def h_index(citations: list[int]) -> int:
last_qualified = None
for i, citation_count in enumerate(list(sorted(citations, reverse=True))):
if citation_count >= i + 1:
last_qualified = i + 1
else:
break
return last_qualified or 0
class SlowRandomizedSet:
def __init__(self):
self._i: set[int] = set()
def insert(self, val: int) -> bool:
ok = val not in self._i
self._i.add(val)
return ok
def remove(self, val: int) -> bool:
if val in self._i:
self._i.remove(val)
return True
return False
def getRandom(self) -> int:
return random.choice(list(self._i))
class RandomizedSet:
def __init__(self):
self._l: list[int] = []
self._m: dict[int, int] = {}
def insert(self, val: int) -> bool:
if val in self._m:
return False
self._m[val] = len(self._l)
self._l.append(val)
return True
def remove(self, val: int) -> bool:
if val not in self._m:
return False
val_loc = self._m[val]
last_val = self._l[-1]
self._l[val_loc] = last_val
self._m[last_val] = val_loc
self._l.pop()
self._m.pop(val)
return True
def getRandom(self) -> int:
return random.choice(self._l)
class TrieNode(typing.NamedTuple):
value: str
kids: dict[str, "TrieNode"]
@property
def is_leaf(self) -> bool:
return "__self__" in self.kids
@classmethod
def leaf(cls) -> "TrieNode":
return cls("__self__", {})
class Trie:
def __init__(self):
self._root_node = TrieNode("", {})
def insert(self, word: str) -> None:
if len(word) == 0:
return
current_node = self._root_node
for prefix in [word[: i + 1] for i in range(len(word))]:
current_node.kids.setdefault(prefix, TrieNode(prefix, {}))
current_node = current_node.kids[prefix]
leaf = TrieNode.leaf()
current_node.kids[leaf.value] = leaf
def search(self, word: str) -> bool:
return self._has(word, prefix_ok=False)
def startsWith(self, prefix: str) -> bool:
return self._has(prefix, prefix_ok=True)
def _has(self, word: str, prefix_ok: bool) -> bool:
if len(word) == 0:
return True
reverse_path = [word[: i + 1] for i in range(len(word))][::-1]
current_node = self._root_node
while reverse_path and current_node is not None:
current_node = current_node.kids.get(reverse_path.pop())
return (
current_node is not None
and (current_node.is_leaf or prefix_ok)
and current_node.value == word
)
def count_factorial_trailing_zeroes(number: int) -> int:
divisor: int = 5
zeroes_count: int = 0
while divisor <= number:
zeroes_count += number // divisor
divisor *= 5
return zeroes_count
def copy_random_list(
head: stdlib.ListNodeRandom | None,
) -> stdlib.ListNodeRandom | None:
if head is None:
return None
ordered = []
cur = head
while cur is not None:
ordered.append(cur)
cur = cur.next
ordered_copy = [stdlib.ListNodeRandom(entry.val) for entry in ordered]
hash_idx = {hash(n): i for i, n in enumerate(ordered)}
for i, entry in enumerate(ordered):
if i + 1 < len(ordered_copy):
ordered_copy[i].next = ordered_copy[i + 1]
if entry.random is not None:
ordered_copy[i].random = ordered_copy[hash_idx[hash(entry.random)]]
return ordered_copy[0]
def sum_max_sub_array(nums: list[int]) -> int:
mmax = last = prev = nums[0]
for i in range(1, len(nums)):
prev = nums[i] + last
last = max(nums[i], prev)
mmax = max(mmax, last)
return mmax
def sum_max_sub_array_i(nums: list[int]) -> tuple[int, int]:
mmax_i: int = 0
mmax = last = prev = nums[0]
for i in range(1, len(nums)):
prev = nums[i] + last
last = max(nums[i], prev)
mmax_i = i if last > mmax else mmax_i
mmax = max(mmax, last)
return mmax_i, mmax
def sum_max_sub_array_accum(nums: list[int]) -> int:
accum: list[int] = [nums[0]]
for i in range(1, len(nums)):
prev: int = nums[i] + accum[-1]
accum.append(max(nums[i], prev))
return max(accum)
def accum_sub_array_maxes(nums: list[int]) -> list[int]:
accum: list[int] = [nums[0]]
for i in range(1, len(nums)):
prev: int = nums[i] + accum[-1]
accum.append(max(nums[i], prev))
return accum
def neighborly_node_from_list(inlist: list[list[int]]):
# Alias "Node" type for leetcode compat
Node = stdlib.NeighborlyNodeNicely
if len(inlist) == 0:
return None
outlist = [Node(i + 1, []) for i in range(len(inlist))]
for i in range(len(inlist)):
outlist[i].neighbors[:] = []
for neighbor_val in inlist[i]:
outlist[i].neighbors.append(outlist[neighbor_val - 1])
return outlist[0]
def neighborly_node_to_list(node) -> list[list[int]]:
serialized: dict[int, list[int]] = {}
for cur in traverse_neighborly_node(node, serialized):
if cur is None:
break
serialized[cur.val] = [n.val for n in cur.neighbors]
return [v for _, v in sorted(serialized.items())]
def traverse_neighborly_node(
node: stdlib.NeighborlyNodeNicely, memo: collections.abc.Container[int]
) -> typing.Iterator[stdlib.NeighborlyNodeNicely | None]:
yield node
if node is None:
return
for neighbor in node.neighbors:
if neighbor.val in memo:
continue
yield from traverse_neighborly_node(neighbor, memo)